Name That Plane

Powder Metal Gaining Interest in Titanium

Manufacturing Group | June 25, 2012

Several companies are exploring how leading edge, powdered metal techniques might be used as a lower-cost alternative to produce titanium.

Powder metal technology has garnered considerable interest in the global titanium industry. Several companies are exploring how leading edge, powdered metal techniques might be used as a lower-cost alternative to produce titanium. If such pilot programs are demonstrated to be commercially viable, they have the potential to open up a wider spectrum of commercial and industrial applications for titanium.

Responding to this interest, TITANIUM 2012, the 28th annual conference and exhibition sponsored by the International Titanium Association (ITA), Northglenn, CO, will feature general session speaker panels on titanium powder production and manufacturing parts from titanium powder.

For titanium powder production, one presentation will come from representatives of Commonwealth Scientific Industrial Research Organization, The Ohio State University and Oak Ridge National Labs. The combined presentation, “Titanium Powdered Metal—What’s After the Kroll Process?” will review how researchers recently have embraced solid-state production of titanium, sparking optimism that can bolster the entire titanium industry. Speakers will explain how they envision market benefits from solid-state technologies, such as how the cost to build commercial capacity, solid-state production facilities are calculated to be much lower than existing Kroll and ingot metallurgy facilities.

Other presentations in this panel will include “Performance of Composite Pour Tubes for Titanium Close Coupled Atomization” by representatives of Iowa State University, Ames, IA, and Ames Laboratory (USDOE).

Regarding the focus on manufacturing titanium powder-metal parts, Bill Peter, leader, Materials Processing and Manufacturing Group, Oak Ridge National Laboratory, Oak Ridge, TN, will present “Forging of Powder Metallurgy Processed Ti-6Al-4V.” Peter will describe how, in a collaborative project between Lockheed Martin Aeronautics Company and Oak Ridge National Laboratory, a 300 lb aircraft component forging of Ti-6Al-4V was produced from a billet of material that was prepared using powder metallurgy processing. The titanium alloy powder that was made by the plasma rotating electrode process was consolidated via hot-isostatic pressing to produce a 400-pound block, then machined to billet dimensions that were specified for standard production components. The billet successfully was forged along with standard cast and wrought Ti-6Al-4V extra-low interstitial (ELI) billets. Testing results showed the properties of the powder-metal Ti-6Al-4V compared favorably to the cast and wrought ELI Ti-6Al-4V.

This panel also will feature presentations by K. Kondoh, a professor at Osaka University, Japan (“Next-Generation Development of a Superior Grade Titanium Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace and Defense Applications”); Nigel A. Stone, team leader, titanium, ceramics and particulates, of the CSIRO Process Science and Engineering group (“The Influence of Titanium Powder Source and Processing Conditions on the Microstructure/Mechanical Property Relationship of Direct Powder-Rolled Titanium Sheet”); Ryan R. Dehoff of Oak Ridge National Laboratory (“Advances in Additive Manufacturing of Titanium”); and “The Metalysis Process: From Patents to Production,” by Dr. Kartik Rao, product manager, titanium, of Metalysis Ltd., South Yorkshire, UK.

In another presentation, Matthias Scharvogel, representing Element 22 GmbH, Kiel, Germany, will discuss the company’s progress in developing surgical implants and commercial aerospace components using metal injection molding (MIM) of titanium powder.

Based on the initial ASTM standard for MIM titanium surgical implants (published in 2011), an Element 22 customer recently received approval to implant MIM parts in the United States.

Element 22 is a fully integrated manufacturer specializing in powder metallurgy technology for titanium and titanium alloys to produce finished components. It utilizes electrode induction-melting gas atomization (EIGA) powder and is exploring alternative powder-metal production methods. The German company also is developing advanced titanium powder metallurgy production technologies to produce foil and tubes. Components can be produced from any titanium alloy and porosity levels can be tailored to meet customer specifications. However, while citing its design and cost-savings advantages to produce net-shape parts from titanium powders, Element 22 acknowledges that the challenge remains to educate engineers on MIM techniques.

TITANIUM 2012 represents an efficient way for delegates to gain timely market intelligence and meet potential partners, customers and vendors. The annual gathering attracts titanium producers, distributors, designers and fabricators from throughout the world. Attendees typically hold executive positions in areas such as management, sales and marketing, product development, production, engineering, purchasing and quality control. Last year TITANIUM 2011, held in San Diego, drew a record attendance of 1,168 guests from 28 countries.

Pre-Registration ends July 16th for TITANIUM 2012.

You May Also Like

comments powered by Disqus